Select an object that is:
SQUARE ∧ BLUE
Select an object that is:
SQUARE ∨ BLUE
Select an object that is:
¬ SQUARE
Select an object that is:
¬ ¬ SQUARE
Select an object that is:
¬ (TRIANGLE ∨ BLUE)
Select an object that is:
¬ TRIANGLE ∧ ¬ BLUE
Select an object that is:
¬ (SQUARE ∧ GREEN)
Select an object that is:
¬ SQUARE ∨ ¬ GREEN
True or False?:
∀x. SQUARE(x)
True or False?:
∃x. TRIANGLE(x)
∀x. SQUARE(x) ∨ RED(x)
∀x. SQUARE(x) ∨ RED(x)
∀x. SQUARE(x) ∨ RED(x)
∀1. SQUARE(1) ∨ RED(1)
SQUARE(1) ∨ RED(1)
∃x. TRIANGLE(x) ∧ RED(x)
∃x. TRIANGLE(x) ∧ RED(x)
∃x. TRIANGLE(x) ∧ RED(x)
∃2. TRIANGLE(2) ∧ RED(2)
∃1. TRIANGLE(1) ∧ RED(1)
∃3. TRIANGLE(3) ∧ RED(3)
TRIANGLE(2) ∧ RED(2)
TRIANGLE(1) ∧ RED(1)
TRIANGLE(3) ∧ RED(3)
TRIANGLE(2)
TRIANGLE(1)
TRIANGLE(3)
True or False?:
¬ ∀x. SQUARE(x)
True or False?:
∃x. ¬ SQUARE(x)
True or False?:
¬ ∃x. TRIANGLE(x)
True or False?:
∀x. ¬ TRIANGLE(x)
¬ ∀x.(SQUARE(x) ∨ GREEN(x))
∃x.¬(SQUARE(x) ∨ GREEN(x))
∃x.(¬SQUARE(x) ∧ ¬GREEN(x))
∃x.(¬SQUARE(x) ∧ ¬GREEN(x))
∃x.(¬SQUARE(x) ∧ ¬GREEN(x))
∃2.(¬SQUARE(2) ∧ ¬GREEN(2))
∃1.(¬SQUARE(1) ∧ ¬GREEN(1))
∃3.(¬SQUARE(3) ∧ ¬GREEN(3))
¬SQUARE(2) ∧ ¬GREEN(2)
¬SQUARE(1) ∧ ¬GREEN(1)
¬SQUARE(3) ∧ ¬GREEN(3)
¬SQUARE(2)
¬SQUARE(1)
¬SQUARE(3)
¬ ∃x.(TRIANGLE(x) ∧ GREEN(x))
∀x.¬(TRIANGLE(x) ∧ GREEN(x))
∀x.(¬TRIANGLE(x) ∨ ¬GREEN(x))
∀x.(¬TRIANGLE(x) ∨ ¬GREEN(x))
∀x.(¬TRIANGLE(x) ∨ ¬GREEN(x))
∀3.(¬TRIANGLE(3) ∨ ¬GREEN(3))
¬TRIANGLE(3) ∨ ¬GREEN(3)
¬ ∀x.(¬SUN(x) ∨ PURPLE(x))
∃x.¬(¬SUN(x) ∨ PURPLE(x))
∃x.(¬¬SUN(x) ∧ ¬PURPLE(x))
∃x.(¬¬SUN(x) ∧ ¬PURPLE(x))
∃x.(¬¬SUN(x) ∧ ¬PURPLE(x))
∃1.(¬¬SUN(1) ∧ ¬PURPLE(1))
∃2.(¬¬SUN(2) ∧ ¬PURPLE(2))
∃3.(¬¬SUN(3) ∧ ¬PURPLE(3))
¬¬SUN(1) ∧ ¬PURPLE(1)
¬¬SUN(2) ∧ ¬PURPLE(2)
¬¬SUN(3) ∧ ¬PURPLE(3)
¬¬SUN(1)
¬¬SUN(2)
¬¬SUN(3)
¬ ∃x.(PURPLE(x) ∧ ¬MOON(x))
∀x.¬(PURPLE((x) ∧ ¬MOON(x))
∀x.(¬PURPLE((x) ∨ ¬¬MOON(x))
∀x.(¬PURPLE((x) ∨ ¬¬MOON(x))
∀x.(¬PURPLE((x) ∨ ¬¬MOON(x))
∀2.(¬PURPLE((2) ∨ ¬¬MOON(2))
¬PURPLE(2) ∨ ¬¬MOON(2)
¬ ∀x.((MOON(x) ∨ ¬ORANGE(x)) ∨ SUN(x))
∃x.¬((MOON(x) ∨ ¬ORANGE(x)) ∨ SUN(x))
∃x.(¬(MOON(x) ∨ ¬ORANGE(x)) ∧ ¬ SUN(x))
∃x.(¬(MOON(x) ∨ ¬ORANGE(x)) ∧ ¬ SUN(x))
∃x.(¬(MOON(x) ∨ ¬ORANGE(x)) ∧ ¬ SUN(x))
∃1.(¬(MOON(1) ∨ ¬ORANGE(1)) ∧ ¬ SUN(1))
∃2.(¬(MOON(2) ∨ ¬ORANGE(2)) ∧ ¬ SUN(2))
∃3.(¬(MOON(3) ∨ ¬ORANGE(3)) ∧ ¬ SUN(3))
¬(MOON(1) ∨ ¬ORANGE(1)) ∧ ¬ SUN(1))
¬(MOON(2) ∨ ¬ORANGE(2)) ∧ ¬ SUN(2))
¬(MOON(3) ∨ ¬ORANGE(3)) ∧ ¬ SUN(3)
¬(MOON(3) ∨ ¬ORANGE(3))
¬(MOON(1) ∨ ¬ORANGE(1)) ∧ ¬ SUN(1)
¬(MOON(2) ∨ ¬ORANGE(2)) ∧ ¬ SUN(2)
¬MOON(3) ∧ ¬¬ORANGE(3)
¬MOON(2) ∧ ¬¬ORANGE(2)
¬MOON(3)
¬MOON(2)
¬ ∃x.((PURPLE(x) ∨ MOON(x)) ∧ ¬MOON(x))
∀x.¬((PURPLE(x) ∨ MOON(x)) ∧ ¬MOON(x))
∀x.(¬(PURPLE(x) ∨ MOON(x)) ∨ ¬¬MOON(x))
∀1.(¬(PURPLE(1) ∨ MOON(1)) ∨ ¬¬MOON(1))
¬(PURPLE(1) ∨ MOON(1)) ∨ ¬¬MOON(1)
¬(PURPLE(1) ∨ MOON(1))
¬¬MOON(1)
¬PURPLE(1) ∧ ¬MOON(1)
¬PURPLE(1)
¬ ∀x.((SUN(x) ∨ ¬ORANGE(x)) ∨ (MOON(x) ∧ ORANGE(x)))
∃x.¬((SUN(x) ∨ ¬ORANGE(x)) ∨ (MOON(x) ∧ ORANGE(x)))
∃x.(¬(SUN(x) ∨ ¬ORANGE(x)) ∧ ¬(MOON(x) ∧ ORANGE(x)))
¬(SUN(3) ∨ ¬ORANGE(3)) ∧ ¬(MOON(3) ∧ ORANGE(3))
¬(SUN(1) ∨ ¬ORANGE(1)) ∧ ¬(MOON(1) ∧ ORANGE(1))
¬(SUN(2) ∨ ¬ORANGE(2)) ∧ ¬(MOON(2) ∧ ORANGE(2))
¬MOON(3) ∨ ¬ORANGE(3)
¬SUN(1) ∧ ¬¬ORANGE(1)
¬SUN(2) ∧ ¬¬ORANGE(2)
¬ ∃x.((¬MOON(x) ∨ ORANGE(x)) ∧ (PURPLE(x) ∨ MOON(x)))
∀x.¬((¬MOON(x) ∨ ORANGE(x)) ∧ (PURPLE(x) ∨ MOON(x)))
∀x.(¬(¬MOON(x) ∨ ORANGE(x)) ∨ ¬(PURPLE(x) ∨ MOON(x)))
∀1.(¬(¬MOON(1) ∨ ORANGE(1)) ∨ ¬(PURPLE(1) ∨ MOON(1)))
¬(¬MOON(1) ∨ ORANGE(1)) ∨ ¬(PURPLE(1) ∨ MOON(1))
¬(PURPLE(1) ∨ MOON(1))
¬(¬MOON(1) ∨ ORANGE(1))
¬PURPLE(1) ∧ ¬MOON(1)
¬¬MOON(1) ∨ ¬ORANGE(1))
¬PURPLE(1)
¬¬MOON(1)
Correct! 😇
Incorrect! 🤕
∧ means AND!
∨ means OR!
¬ means NOT!
¬¬ A ≡ A so ¬ ¬ SQUARE ≡ SQUARE
∀ means FOR ALL!
∃ means THERE EXISTS!
Did you notice that the previous two statements were the same?
This is an example of De Morgan's Law!
¬ (A ∨ B) ≡ ¬ A ∧ ¬ B
Did you notice that the previous two statements were the same?
This is another example of De Morgan's Law!
¬ (A ∧ B) ≡ ¬ A ∨ ¬ B
Did you notice that the previous two statements were the same?
This is another example of De Morgan's Law!
¬ ∀x.P(x) ≡ ∃x.¬P(x)
¬ ∀ means NOT ALL!
Did you notice that the previous two statements were the same?
This is another example of De Morgan's Law!
¬ ∃x.P(x) ≡ ∀x.¬P(x)
¬ ∃ means NO!
True! This object is a square, but not red. 😇
False! This object is a square, but not red. 🤕
True! This object is a triangle. 😇
False! This object is a square, not a triangle. 🤕
True! This object is not a square. 😇
False! This object is a square. 🤕
True! This object is not a triangle. 😇
False! This object is green. 🤕
True! This object is a sun. 😇
False! This object is not a sun. 🤕
True! This object is a moon. 😇
False! This object is purple. 🤕
True! This object is not a moon. 😇
False! This object is a sun. 🤕
False! This object is a moon. 🤕
True! This object is not purple. 😇
False! This object is not a moon. 🤕
True! This object is not a moon. 😇
False! This object is orange. 🤕
False! This object is a sun. 🤕
False! This object is not orange. 🤕
True! This object is not purple. 😇
False! This object is not a moon. 🤕
Well done for finishing the game! 😊